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A polymer chain consisting of N, segments with a repulsive interaction (binary cluster integral fl,) and 
Na,~N r segments with a stronger, attractive and pairwise saturable interaction (fla), which is at the 
averaged 0-point N2fl,+N2fla=0 deviations from the predictions of the two parameter theory: 
Ct2R--I~--~Zr<0 and A2~Zr~0 with ~.r,,~flr(Na/Nr) 1/2. It is shown that the deviations from the 
universal behaviour are due to the existence of an intermediate length scale ~Na/N ,. 

(Keywords: 0 behaviour; saturable attractive interaction; expansion factor; second virial coefficient; 
deviation from universality) 

INTRODUCTION 

The 'two-parameter concept' (see ref. 1) can be character- 
ized in the vicinity of the 0-point by the following 
expressions for the expansion factors of the mean square 
end-to-end distance and the radius of gyration and for the 
second virial coefficient of the osmotic pressure 

ct2/s -- 1 ~ z 

A2 ,,~flh(z); h(z)---*l 

z ~ ~ - - - , 0  

(la) 

(lb) 
(lc) 

This is the common basis for the interpretation of 
equilibrium properties of dilute polymer solutions. Wi- 
thin the 'two-parameter concept' the effects of intra- and 
intermolecular interaction between macromolecular seg- 
ments are controlled by the excluded volume parameter 
z=(3/21r)a/2flN2/(R2)3o/2. This is the ratio between the 
strength of the interaction fi NE and the volume of the 
unperturbed coil (R2)ao/2 = N3/21 a. The usual symbols fl, l 
and N are used for the binary cluster integral, the statistical 
segment length and the number of statistical segments 
respectively. Experimental results for a number of poly- 
mers (see ref. l) and the universality principle 2 or the 
scaling concepts a'4 emerging from the relationship be- 
tween physics of critical phenomena and polymer physics 
confirm equations (la) and (lb), which were first of all 
derived by several approximate theories I. From equa- 
tions (la) and (lb) it follows that at the theta-point 
(fl=z=0) the molecular dimensions have their unper- 
turbed values and A 2 disappears. This picture may be 
slightly perturbed by the influence of the three segment 
interaction 5, but at least for linear polymers in three 
dimensions the three segment interaction may be absor- 
bed in an effective two segment interaction and equations 
(la) and (lb) remain valid in the vicinity of T-- 0. Thus the 
two parameter theory for long flexible macromolecules 
appears to be supported theoretically by introducing a 
renormalized pairwise segment-segment interaction 

parameter, with its zero at the experimentally observable 
0-point 7. 

However, the experimental results for a number of 
polymer-solvent systems are not in agreement with the 
predictions of the 'two-parameter concept '8. Typical 
common features of such systems which often tend to 
associations of macromolecules too, may be characterized 
by equations (2a) and (2b) 

2 < o~2/s~ N 2"-' with 1/3 <~ v < 1/2 which implies erR~s~ 1 
(2a) 

A 2 > 0 (2b) 

in a certain temperature interval ('theta-region'). It may be 
concluded from equation (2a) that the resulting in- 
teraction between segments is attractive, while A2>0 
points to a repulsive intermolecular interaction. Equa- 
tions (2a) and (2b) are in qualitative disagreement with the 
results of the 'two-parameter concept' (la) and (lb). Thus 
we have to expect qualitatively different properties for 
polymer-solvent systems obeying equations (1) or (2). We 
have learned from the scaling approach that the universal 
behaviour (equation (1)) is caused by the existence of long 
ranged correlations which are large in comparison with 
any molecular scales. Consequently, it may be expected 
that weak deviations from the universal behaviour are 
caused by the existence of an intermediate length scale 
which is large in comparison with the molecular level (the 
statistical segment length) but much smaller than the 
chain length. Examples of such polymer systems may be 
expected being random copolymers with very different 
comonomer content and with different interactions be- 
tween the comonomers. The interaction between seg- 
ments may depend on the configuration or the confor- 
mation of the segments of homopolymers, too. Examples 
of such interactions are chain defects, stereocomplexes, 
configuration-dependent dipole moments for polar mac- 
romolecules or 'microcrystallites' formed by bundlelike 
short regular sequences of conformations (e.g. all-trans) of 

0032-3861/85/010105-04503.00 
© 1985 Butterworth & Co. (Publishers) Ltd. POLYMER, 1 985, Vol 26, January 105 



Theta behaviour of heterogeneous macromolecules: E. Straube 

different chains or different parts of one chain. We 
investigated a chain model where most of the segments 
show a weak repulsive interaction, while a few segments 
possess a stronger, attractive and pairwise saturable 
interaction. The intermediate length scale is then the 
average distance between the 'attractive' segments. Si- 
milar models are considered (in refs. 5, 9 and 10) within the 
framework of the Lifshitz-theory. In ref. 9 the coil-globule 
transition is investigated for saturable attractive in- 
teraction, whereas in refs. 5a and 10 the shift of the 0- 
temperature caused by three segment interactions is 
considered. In these works the case of infinite dilution is 
only investigated and effects resulting from an inter- 
mediate length scale cannot be taken into account, since 
in the mean-field Lifshitz-approach all properties are 
controlled by an averaged interaction energy. 

DESCRIPTION OF THE MODEL 

We will investigate a freely jointed chain of Gaussian 
statistical segments with the following properties: 

1. The chain consists of N , ~ - N  segments with a weak 
repulsive interaction (binary cluster integral fl,) with all 
segments and of N ° ~ N  segments which show a 
pairwise saturable, attractive interaction (binary clus- 
ter integral ft,). Both types of segments have the same 
statistical segment length I. 

2. All sequences of segments for given numbers N, and Na 
are of equal probability. 

3. Very long chains are considered here. The conditions 
Nr/N= ~> 1 and N= ~> 1 are fulfilled simultaneously. 

4. The influence of three segment interactions will be 
absorbed into renormalized binary cluster integrals 
(compare equations (5), (6) and (7)). 

TH EO RY 

Expansion factor 
An attractive interaction causes an enhanced contact 

probability of the corresponding segments. If the attrac- 
tive, saturable interaction of a small number of segments 
N= 4 N is strong enough that the contact probability of all 
of these segments is comparable with one, then a coil- 
globule transition may occur 9. In the 0-region Ct2s/R ~ 1 the 
effects of attractive and repulsive interactions nearly 
compensate each other. Then only the contact probability 
of 'attractive' segments neighbouring along the chain is 
significantly enhanced. This contact probability is given 
by 

P(Old,) = fl,P'(Oid.) <~fl=po(Oij°) 

<<, flJ(3/2nl 2 [j= - io I) 3/2 
(3) 

p' denotes the probability density for the distance between 
the segments i, and j,, where the interaction between the 
segments i= and j= must not be taken into account. The 
attractive interaction of the segments under consideration 
in equation (3) is contained in rio. As a consequence p' is 
determined mainly by the interaction of the 'repulsive' 
segments between segments i= and j= and the ones on the 
adjacent parts of the chain. In our investigation of the 0- 
region, p' will be approximated by the random walk 
distribution Po. The explicit expression shows a fast 

decrease of the contact probability for increasing chain 
length between the 'attractive' segments io andj= (compare 
to equation (3)). 

The distribution function p(R) of the chain end-to-end 
distance is given by 

t"  
p(R) = Z -  l Jda{r}6(R - (r N - r~ ))po({r}) 

H H 
× / , ~ ( 1  +f~'J')k. < la (1 "['fk°l.) 

(4) 

po({r}) is the random walk distribution of the Gaussian 
segments, f,j, and fk,t. are the Mayer's f-functions of the 
repulsive and the attractive interaction, respectively. Z is 
the normalizing partition function. On account of the 
enhancement of the contact probability for adjacent 
'attractive' segments it seems reasonable to take into 
consideration explicitly the loops formed by contacts of 
these segments. Splitting up the product of the fk,t, and 
regarding the contribution of single loops only 
((P(Ok,k +1,) 2 '~ P(Ok.k  +l.)) yields 

I~(1-I-fk.'.)----l--[(l+fk.k+') U (l+fk=t.) 
k. <1 k= k.,l.>.k + 1. 

~-(1 +.,~,/'ka,+,.) ]-I (1 +fk.,.) 
ko k.,l=>k + l° 

and 
p(R) = (p.,(R) + 

(5) 

fla~p'(Ok.k+l.)p(RlOk.k+l.))/(1 + fl,,,~p'(Ok.k + t.)) (6) 
k= k. 

for the distribution function of the end-to-end distance for 
a chain with a given sequence of'attractive' and 'repulsive' 
segments, p,z(R) and p(RlOk~k+l) are the distribution 
functions of the end-to-end dlsta~ice for the chain under 
consideration without contacts of adjacent 'attractive' 
segments and with contact of the k-th and the k + 1-th 
'attractive segment' respectively. In equation (6) we have 
to sum up over all contacts of neighbouring 'attractive' 
segments. According to our model we have to investigate 
an ensemble of chains with randomly distributed attrac- 
tive segments. The ensemble average of the distribution 
function (6) is approximated by 

(p(R)> =( i  -Po)P.,(R)+Pop(RIOak.) (7) 

with 

Po = NaP(Oak.)/(1 + N°P(Oak.)) 

and 
Ak# = N / N ,  ~- N,/No ,~ N 

The approximation may be justified by the following 
considerations 

1. All quantities in equation (6) depend in the case of short 
loops only on the length of the loop and are inde- 
pendent on the position of the loop within the chain. 

2. We work in the 0-region and are interested mainly in 
the sign of ~2_ 1 and A2. Interaction effects may be 
considered in this case in linear order and the in- 
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troduction of averaged values into equation (6) yields 
equation (7). 
Using the method of hierarchy equations for the 

distribution functions p,l(R) and p(RlOak ) (see ref. 1) we 
obtain 

pro(R) = Z? lp~)(R)exp(- Vtm(R)/kT) (8) 

p(RlOt, k.) = Z2 'P~-Ak')(R)exp(-- V(RIO,u,.)/k T) (9) 

with the ensemble averaged potentials of mean forces 

~2=1 Az.(1 - 0.4z,) 
l +N~/2z~ ; Az,=(3/2rd2)3/2fl,.Ak~/2 (16) 

Equation (16) shows that for z, ~ 1 the heterogeneity of the 
intramolecular interaction leads to a contraction of the 
coil at T=(O) .  We get a deviation from a simple 
extrapolation of the results of the two-parameter concept 
which is controlled, as mentioned already above, by an 
additional length scale above the molecular level l, Az, 
turns out to be the measure of the influence of this 
heterogenity on the molecular dimensions. 

V~m(R)/kT~_(fl,+flo(NJN,) 2) ~,, p(Ok, IR ) (10) 
k < l  

V(RIOAk.)/k T= V IN- ~')(R)/k T+ Vt, ak.(R)/k T 

Vzt,ak.(R)/kT"~fl, ~, p(OulR) 
ke loop 
Is tails 

(11) 

The upper index in equations (8)--(11) is introduced for 
convenience and denotes the number of segments of linear 
chains figuring in the expressions for the needed distri- 
bution functions. 

In equations (10) and (11) we have now to sum up the 
contributions of all segment pairs with exclusion of the 
neighbouring 'attractive' segments. Concentrating our 
interest on the vicinity of the 0-region we may replace the 
conditional distribution functions on the right hand side 
of equations (10) and (11) by the unperturbed functions Po. 
Then it is useful to perform all further investigations at the 
'averaged two parameter 0-point' T = (0)  where the R- 
dependent part of V(R)~-(N2fl ,+N2fl , , )IRI vanishes. 
Then the R-dependent part of VtN-ak')(R) originating 
from the segments in the tails outside the loop vanishes as 
well, and it remains as the pure repulsive contribution 
Vt, ak.(R) of the interaction of the segments in the loop 
with the segments in the tails. Vh,Ak.(R ) may be approxi- 
mated 1~ for Aka<N by 

V~,,a,. (R )/k T = - 1.2z,(Ak=/N)X (12) 

with ;r=(3/21Z12)3/2flrNlr/2 and X=(R2/NI2) U2. From 
equations (7)-(12) it follows for the ensemble averaged 
mean square end-to-end distance 

( (R2) )=(1-Po) (R2)o+Ro(R2)o~2(Ak=)  (13) 

~2(Aka) contains the contraction due to the loop for- 
mation and the expansion caused by the repulsive poten- 
tial Vtt.ak. Using the Heermans-Overbeck procedure we 
obtained an estimate for ~2(Aka) 

__3_ff_xV(X)x_l Ak= 1-0.4z.) (14) ct2(Ak=)~-I 1 8 ~-1-  N (  

and finally 

ct2 = ( ( R 2 ) ) / ( R 2 )  o = 1 - poAN~(1 -- 0.4z,) (15) 

Due to the restriction to T = (0)  the attractive and the 
repulsive interactions are related by the definition of (0).  
Thus ct 2 may be expressed by r ,  alone 

Second virial coefficient 
We start from the MacMillan-Mayer theory 

¢ 
A2 N~/2VM2 [d3({r} ,)d 3({r}2)P({r}t)P({r}2) 

[exp(-  W({r},, {r}2) /kr) -  1] (17) 

Expansion of the intcrmolecular interaction term 
exp(-W({r}l,{r}2)/kT) to first order into Mayer's f- 
functions and introduction of equation (5) for the contri- 
bution of the attractive intramolecular interaction into 
p({r}x) and p({r}2), respectively, gives 

A 2 = NA/2M2[ ~ fl, + ~ f l , , ( 1  - P(Ok,.k + x  l.) 
Li~,i2, kl,k2, 

- P(Ok,.k-1~.))(1 -- P(Ok,.k + I,=) - P(Ok~.k- 1,.)] (18) 

We get a weighted sum over all possible contributions of 
the intermolecular interaction. The weights 
(1--P(Ok.k±l.)) are the result of the assumed saturability 
of the attractive interaction in our model. Ensemble 
averaging gives then at T=  (0)  

(.42) = N°/2m 2" N2/N2( - fl=)'4P(OAk,) 

= NA/2m 2' 4fl," Az¢ 
(19) 

(A2) is greater than zero at T = (0)  because a part of the 
intermolecular attractive interaction may be realized by 
breaking up the intramolecular interactions only. Con- 
sequently, the repulsive intermolecular interactions are 
only partially compensated by the interactions of the 
'attractive' segments. 

CONCLUSIONS 

A simple model for heterogeneous macromolecules was 
investigated. It was assurncd that among segments with a 
weak repulsive interaction (the solvent was a moderately 
good one for these segments). A few segments with a 
stronger attractive, saturable interaction are rarely mixed. 

Approximate expressions for the expansion factor and 
the second virial coefficient are derived. The main results 
~t 2 <~ i and A2 > 0 at T-- (0) arc independent on the used 
approximations. The deviations from the results of the 
'two-parameter concept' are controlled by Az,, the mea- 
sure of strength and extension along the chain of the 
heterogeneity of the segment-segment interaction. The 
deviation from the 'two-parameter-theory' and with it 
from the universality principle is in agreement with the 
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physical foundation of this principle itself. For non-zero 
heterogeneity Az,>0 an intermediate length scale be- 
tween the molecular (the segment length /) and the 
macromolecular scale (e.g. (R2)) exists. Hence the uni- 
versality principle based on the existence of one charac- 
teristic length only may not be valid. On the other hand 
we have to expect a behaviour according to the 'two- 
parameter-theory' if a heterogeneous interaction is aver- 
aged out over distances along the chain which are 
comparable with the statistical segment length. Examples 
are alternating copolymers or random copolymers with a 
comonomer ratio nearly one. The general results are in 
agreement with the scaling results in ref. 12, where for 
copolymers more complicated scaling relations for (R 2) 
are deduced than in the case of homopolymers. 
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